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1 Introduction

The aim of this paper is to investigate the existence of infinitely many weak solutions for the
following doubly eigenvalue quasilinear two-point boundary value system

{
−(pi − 1)|u′i(x)|pi−2u′′i (x)=(λFui(x, u1, . . . , un)+µGui(x, u1, . . . , un))hi(x, u′i) in (a, b)

ui(a) = ui(b) = 0, 1 ≤ i ≤ n,
(Dλ,µ)

where pi > 1 for 1 ≤ i ≤ n, λ > 0, µ ≥ 0 are real numbers, a, b ∈ R with a < b,
F : [a, b] ×Rn → R is a function such that F ∈ C1([a, b] ×Rn) and F(x, 0, . . . , 0) = 0 for all
x ∈ [a, b], G : [a, b]×Rn → R is a function such that G ∈ C1([a, b]×Rn) and G(x, 0, . . . , 0) = 0
for all x ∈ [a, b] and hi : [a, b] × R →]0,+∞[ is a bounded and continuous function with
mi := inf(x,t)∈[a,b]×R hi(x, t) > 0. Here, Fui and Gui denote respectively the partial derivatives
of F and G with respect to ui for 1 ≤ i ≤ n.

On the existence of multiple solutions for two-point boundary value problems of the type
(Dλ,µ), several results are known when n = 1, see for example [2, 3, 18, 23] and the references
cited therein. Existence results for nonlinear elliptic systems with Dirichlet boundary condi-
tions have also received a great deal of interest in recent years; see, for instance, the papers
[11, 13, 19, 20, 22].
BCorresponding author. Email: s.heidarkhani@razi.ac.ir
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For a discussion about the existence of infinitely many solutions for boundary value
problems, using Ricceri’s variational principle [26] and its variants ([5, Theorem 2.1] and
[24, Theorem 1.1]) we refer the reader to the papers [1, 4, 6–10, 12, 14–17, 21, 27]. We also refer
the reader, for instance, to the papers [25, 28] where the existence of infinitely many solutions
for boundary value problems has been studies by using different approach.

In the present paper, employing a smooth version of [5, Theorem 2.1], under some hy-
potheses on the behavior of the nonlinear terms at infinity, under conditions on the potential
of hi for 1 ≤ i ≤ n, we determine the exact collections of the parameters λ and µ in which the
system (Dλ,µ) admits infinitely many weak solutions (Theorem 3.1). We also list some conse-
quences of Theorem 3.1 and one example. Here, due to the facts, no symmetric assumptions
are requested on the nonlinearities, the infinitely many solutions are local minima of the en-
ergy functionals associated to the problem, and the nonlinearities depend on the term hi(x, u′i)
being hi a continuous bounded function and u′i is the weak derivative of the component ui
of the weak solution u = (u1, u2, . . . , un) of the system (Dλ,µ), the application of variational
methods to investigate the system (Dλ,µ) is not standard.

A special case of our main result is the following theorem.

Theorem 1.1. Let f1, f2 : R2 → R be two positive C0(R2)-functions such that the differential 1-form
w := f1(σ, ν) dσ + f2(σ, ν) dν is integrable and let F be a primitive of w such that F(0, 0) = 0. Fix
two integers p, q > 2, with p ≤ q, and assume that

lim inf
ξ→+∞

F(ξ, ξ)

ξ p = 0 and lim sup
ξ→+∞

F(ξ, ξ)

ξq = +∞.

Then, for every nonnegative arbitrary C1(R2) function G : R2 → R satisfying the condition

G∗∞ := lim sup
ξ→+∞

G(ξ, ξ)

ξ p < +∞,

and for every µ ∈ [0, µG[ where

µG :=
1[

p
2p +

(
q

2p

) p
q
]

G∗∞

,

the system 
−(p− 1)|u′1(x)|p−2u′′1 (x) = f1(u1, u2) + µGu1(u1, u2) in (0, 1),

−(q− 1)|u′2(x)|q−2u′′2 (x) = f2(u1, u2) + µGu2(u1, u2) in (0, 1),

u1(0) = u1(1) = u2(0) = u2(1) = 0,

admits a sequence of pairwise distinct positive weak solutions.

2 Preliminaries

Our main tool to investigate the existence of infinitely many weak solutions for the system
(Dλ,µ) is a smooth version of Theorem 2.1 of [5] that we recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ, Ψ : X −→ R be two Gâteaux differentiable
functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive
and Ψ is sequentially weakly upper semicontinuous. For every r > infX Φ, let us put
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ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r]) Ψ(v)−Ψ(u)

r−Φ(u)
,

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional Iλ = Φ − λΨ to

Φ−1(]−∞, r[) admits a global minimum, which is a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds:

either

(b1) Iλ possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ which weakly
converges to a global minimum of Φ.

Let X be the Cartesian product of n Sobolev spaces W1,p1
0 ([a, b]), W1,p2

0 ([a, b]), . . . , W1,pn
0 ([a, b]),

i.e., X = ∏n
i=1 W1,pi

0 ([a, b]), equipped with the norm

‖(u1, u2, . . . , un)‖ =
n

∑
i=1
‖u′i‖pi , for every (u1, u2, . . . , un) ∈ X,

where

‖u′i‖pi =

(∫ b

a
|u′i(x)|pi dx

)1/pi

, i = 1, . . . , n.

Since pi > 1 for i = 1, . . . , n, X is compactly embedded in (C([a, b]))n.
In the sequel, let p = min{pi; 1 ≤ i ≤ n}, p = max{pi; 1 ≤ i ≤ n},

mi := inf
(x,t)∈[a,b]×R

hi(x, t) > 0 for 1 ≤ i ≤ n,

Mi := sup
(x,t)∈[a,b]×R

hi(x, t) for 1 ≤ i ≤ n,

M := max{Mi; 1 ≤ i ≤ n} and m := min{mi; 1 ≤ i ≤ n}. Then, M ≥ Mi ≥ mi > m > 0 for
each i = 1, . . . , n.
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In order to apply Theorem 2.1 we set

Hi(x, t) =
∫ t

0

( ∫ τ

0

(pi − 1)|δ|pi−2

hi(x, δ)
dδ
)

dτ,

for 1 ≤ i ≤ n and for all (x, t) ∈ [a, b]×R, and consider the functionals Φ, Ψ : X → R for
each u = (u1, . . . , un) ∈ X, as follows

Φ(u) =
n

∑
i=1

∫ b

a
Hi(x, u′i(x)) dx,

and

Ψ(u) =
∫ b

a
F(x, u1(x), . . . , un(x)) dx +

µ

λ

∫ b

a
G(x, u1(x), . . . , un(x)) dx.

It is well known that Ψ is a Gâteaux differentiable functional and sequentially weakly lower
semicontinuous whose Gâteaux derivative at the point u ∈ X is the functional Ψ′(u) ∈ X∗,
given by

Ψ′(u)(v) =
∫ b

a

n

∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx +
µ

λ

∫ b

a

n

∑
i=1

Gui(x, u1(x), . . . , un(x))vi(x) dx,

for every v = (v1, . . . , vn) ∈ X, and Ψ′ : X → X∗ is a compact operator. Moreover, Φ is a
Gâteaux differentiable functional whose Gâteaux derivative at the point u ∈ X is the functional
Φ′(u) ∈ X∗, given by

Φ′(u1, . . . , un)(v1, . . . , vn) =
n

∑
i=1

∫ b

a

(∫ u′i(x)

0

(pi − 1)|τ|pi−2

hi(x, τ)
dτ

)
v′i(x) dx,

for every v = (v1, . . . , vn) ∈ X. Furthermore, Φ is sequentially weakly lower semicontinuous.
By a classical solution of the system (Dλ,µ), we mean a function u = (u1, . . . , un) such that,

for i = 1, . . . , n, ui ∈ C1[a, b], u′i ∈ AC[a, b], and u satisfies (Dλ,µ). We say that a function
u = (u1, . . . , un) ∈ X is a weak solution of the system (Dλ,µ) if

n

∑
i=1

∫ b

a

(∫ u′i(x)

0

(pi − 1)|τ|pi−2

hi(x, τ)
dτ

)
v′i(x) dx−λ

∫ b

a

n

∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx

−µ
∫ b

a

n

∑
i=1

Gui(x, u1(x), . . . , un(x))vi(x) dx = 0,

for every v = (v1, . . . , vn) ∈ X.

3 Main results

In this section, we present our main results. To be precise, we establish an existence result of
infinitely many solutions to problem (Dλ,µ).

For all ξ > 0 we denote by K(ξ) the set{
(t1, . . . , tn) ∈ Rn :

n

∑
i=1
|ti| ≤ ξ

}
. (3.1)
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Let

p∗ =

{
p if b− a ≥ 1,

p if 0 < b− a < 1.

Put

A := lim inf
ξ→+∞

∫ b

a
max

(t1,...,tn)∈K(ξ)
F(x, t1, . . . , tn) dx

ξ p ,

B := lim sup
(t1,...,tn)→∞

∫ b− b−a
4

a+ b−a
4

F(x, t1, . . . , tn) dx

n

∑
i=1

Di(ti)

,

where

Di(ti) :=
∫ a+ b−a

4

a
Hi

(
x,

ti(pi − 1)(x− a)pi−2

( b−a
4 )pi−1

)
dx +

∫ b

b− b−a
4

Hi

(
x,− ti(pi − 1)(b− x)pi−2

( b−a
4 )pi−1

)
dx,

for each ti ∈ R, for all i = 1, . . . , n,

λ1 :=
1
B

and λ2 :=

 n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

p

A
. (3.2)

Theorem 3.1. Assume that

(A1) F(x, t1, . . . , tn) ≥ 0 for each

x ∈
([

a, a +
b− a

4

]
∪
[

b− b− a
4

, b
])

, ti ∈ R, ∀i = 1, . . . , n,

(A2)

lim inf
ξ→+∞

∫ b

a
max

(t1,...,tn)∈K(ξ)
F(x, t1, . . . , tn) dx

ξ p

<

(
n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p

lim sup
(t1,...,tn)→∞

∫ b− b−a
4

a+ b−a
4

F(x, t1, . . . , tn) dx

n

∑
i=1

Di(ti)

.

Then, for each λ ∈]λ1, λ2[ and for every nonnegative arbitrary function G : [a, b]×Rn → R which
is measurable in [a, b] and of class C1(Rn) satisfying the condition

G∞ := lim sup
ξ→+∞

∫ b

a
max

(t1,...,tn)∈K(ξ)
G(x, t1, . . . , tn) dx

ξ p < +∞, (3.3)

and for every µ ∈ [0, µG,λ[ where
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µG,λ :=

1− λ

(
n

∑
i=1

(
pi(b− a)p∗−1M

2p

) 1
pi

)p

A(
n

∑
i=1

(
pi(b− a)p∗−1M

2p

) 1
pi

)p

G∞

,

the system (Dλ,µ) has an unbounded sequence of weak solutions in X.

Proof. Our aim is to apply Theorem 2.1. To this end, fix λ, µ and G satisfying our assumptions.
Let X be the Sobolev space ∏n

i=1 W1,pi
0 ([a, b]). For any u ∈ X, set

Φ(u) =
n

∑
i=1

∫ b

a
Hi(x, u′i(x)) dx, (3.4)

and

Ψ(u) =
∫ b

a
F(x, u1(x), . . . , un(x)) dx +

µ

λ

∫ b

a
G(x, u1(x), . . . , un(x)) dx. (3.5)

It is well known that they satisfy all regularity assumptions requested in Theorem 2.1 and
that the critical points in X of the functional Iλ = Φ− λΨ are precisely the weak solutions of
problem (Dλ,µ).
Let {ξk} be a real sequence of positive numbers such that lim

k→+∞
ξk = +∞, and

A = lim
k→+∞

∫ b

a
max

(t1,...,tn)∈K(ξk)
F(x, t1, . . . , tn) dx

ξ
p
k

.

Put

S =

(
n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p

,

and

rk =
ξ

p
k

S
,

for all k ∈ N. Since 0 < hi(x, t) ≤ M for each (x, t) ∈ [a, b]×R for i = 1, . . . , n, from (3.4) we
see that

1
M

n

∑
i=1

‖u′i‖
pi
pi

pi
≤ Φ(u1, ..., un) ≤

1
m

n

∑
i=1

‖u′i‖
pi
pi

pi
for all u = (u1, ..., un) ∈ X. (3.6)

Taking into account that

max
x∈[a,b]

|ui(x)| ≤ (b− a)
pi−1

pi

2
‖u′i‖pi ,

for each ui ∈W1,pi
0 ([a, b]) (see [28]), we have

max
x∈[a,b]

n

∑
i=1

|ui(x)|pi

pi
≤ (b− a)p∗−1

2p

n

∑
i=1

‖u′i‖
pi
pi

pi
, (3.7)

for each u = (u1, u2, . . . , un) ∈ X. This, for each r > 0, along with (3.6), ensures that

Φ−1(]−∞, r]) ⊆
{

u ∈ X; max
n

∑
i=1

|ui(x)|pi

pi
≤ (b− a)p∗−1Mr

2p for each x ∈ [a, b]

}
.
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Therefore, one has

ϕ(rk) ≤
sup

v∈Φ−1(]−∞,rk ])

Ψ(v)

rk

≤ S

∫ b

a
max

(t1,...,tn)∈K(ξk)
F(x, t1, . . . , tn) dx +

µ

λ

∫ b

a
max

(t1,...,tn)∈K(ξk)
G(x, t1, . . . , tn) dx

ξ
p
k

≤ S

∫ b

a
max

(t1,...,tn)∈K(ξk)
F(x, t1, . . . , tn) dx

ξ
p
k

+ S
µ

λ

∫ b

a
max

(t1,...,tn)∈K(ξk)
G(x, t1, . . . , tn) dx

ξ
p
k

,

(3.8)

for all k ∈N. Therefore, from assumption (A2) and the condition (3.3) one has

γ ≤ lim inf
k→+∞

ϕ(rk) ≤ SA + S
µ

λ
G∞ < +∞. (3.9)

Now, let {(ηi,k)} ⊆ Rn be positive real sequences such that ηi,k > 0 for all i = 1, . . . , n and for
all k ∈N, and

lim
k→+∞

( n

∑
i=1

η2
i,k

) 1
2

= +∞.

Put

B := lim
k→+∞

∫ b− b−a
4

a+ b−a
4

F(x, η1,k, . . . , ηn,k)dx

n

∑
i=1

Di(ηi,k)

. (3.10)

Let {wk = (w1,k(x), ..., wn,k(x))} be a sequence in X defined by

wi,k(x) =



( 4
b− a

)pi−1
ηi,k(x− a)pi−1 if a ≤ x < a +

b− a
4

,

ηi,k if a +
b− a

4
≤ x ≤ b− b− a

4
,( 4

b− a

)pi−1
ηi,k(b− x)pi−1 if b− b− a

4
< x ≤ b,

(3.11)

for each i = 1, . . . , n. Clearly wk(x) ∈ ∏n
i=1 W1,pi

0 ([a, b]) for each k ∈N.
Hence, we have

Φ(wk) =
n

∑
i=1

∫ b

a
Hi(x, w′i,k) dx

=
n

∑
i=1

[∫ a+ b−a
4

a
Hi

(
x,

ηi,k(pi − 1)(x− a)pi−2

( b−a
4 )pi−1

)
dx +

∫ b− b−a
4

a+ b−a
4

Hi(x, 0) dx

+
∫ b

b− b−a
4

Hi

(
x,−ηi,k(pi − 1)(b− x)pi−2

( b−a
4 )pi−1

)
dx

]

=
n

∑
i=1

Di(ηi,k).

(3.12)
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On the other hand, since G is nonnegative and bearing assumption (A1) in mind, from (3.5)
one has

Ψ(wk) =
∫ b

a
F(x, η1,k, . . . , ηn,k) dx +

µ

λ

∫ b

a
G(x, η1,k, . . . , ηn,k) dx

≥
∫ b

a
F(x, η1,k, . . . , ηn,k) dx

≥
∫ b− b−a

4

a+ b−a
4

F(x, η1,k, . . . , ηn,k) dx,

(3.13)

and so

Iλ(wk) = Φ(wk)− λΨ(wk) ≤
n

∑
i=1

Di(ηi,k)− λ
∫ b− b−a

4

a+ b−a
4

F(x, η1,k, . . . , ηn,k) dx.

Now, consider the following cases.
If B < +∞, let ε ∈

]
0, B− 1

λ

[
. From (3.10), there exists νε such that

∫ b− b−a
4

a+ b−a
4

F(x, η1,k, . . . , ηn,k) dx > (B− ε)
n

∑
i=1

Di(ηi,k), for all k > νε,

and so

Iλ(wk) <
n

∑
i=1

Di(ηi,k)− λ(B− ε)
n

∑
i=1

Di(ηi,k) =
n

∑
i=1

Di(ηi,k) [1− λ(B− ε)] .

Since 1− λ(B− ε) < 0, and taking into account (3.6) and (3.12) one has

lim
k→+∞

Iλ(wk) = −∞.

If B = +∞, fix M > 1
λ . From (3.10), there exists νM such that

∫ b− b−a
4

a+ b−a
4

F(x, η1,k, . . . , ηn,k) dx > M
n

∑
i=1

Di(ηi,k), for all k > νM,

and moreover,

Iλ(wk) <
n

∑
i=1

Di(ηi,k)[1− λM].

Since 1− λM < 0, and arguing as before, we have

lim
k→+∞

Iλ(wk) = −∞.

Taking into account that ]
1
B

,
S
A

[
⊆
]

0,
1
γ

[
,

and that Iλ does not possess a global minimum, from part (b) of Theorem 2.1, there exists an
unbounded sequence {uk} of critical points which are the weak solutions of (Dλ,µ). So, our
conclusion is achieved.
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Proof of Theorem 1.1. Since f1 and f2 are positive, then F is nonnegative in R2
+. Moreover, one

has that the functions t1 → F(t1, t2), t2 ∈ R, and t2 → F(t1, t2), t1 ∈ R are increasing in R and,
hence, max(t1,t2)∈K(ξ) F(t1, t2) ≤ F(ξ, ξ) for every ξ ∈ R+. Therefore,

lim inf
ξ→+∞

∫ 1

0
max

(t1,t2)∈K(ξ)
F(t1, t2)dx

ξ p ≤ lim inf
ξ→+∞

∫ 1

0
F(ξ, ξ)dx

ξ p = lim inf
ξ→+∞

F(ξ, ξ)

ξ p = 0.

On the other hand, one has

h1(u′1) = 1 and h1(u′1) = 1.

By simple calculations, we see that

H1(t1) =
|t1|p

p
and H2(t2) =

|t2|q
q

.

Moreover,

D1(t1) =
4p−1|t1|p

p
[
(p− 1)p−2 + (1− p)p−2],

and

D2(t2) =
4q−1|t2|q

q
[
(q− 1)q−2 + (1− q)q−2].

Since p ≤ q, one has

D1(t1) + D2(t2) ≤
4q−1|t1|p

p
[(q− 1)q−2 + (1 + q)q−2] +

4q−1|t2|q
q

[
(q− 1)q−2 + (1 + q)q−2]

≤ 4q−1[(q− 1)q−2 + (1 + q)q−2]

p
(|t1|p + |t2|q)

≤ 4q−1[(q− 1)q−2 + (1 + q)q−2]

p
(|t1|q + |t2|q).

Then

+∞ =
p

4q−1[(q− 1)q−2 + (1 + q)q−2]

1
2

lim sup
ξ→+∞

F(ξ, ξ)

ξq

≤ lim sup
ξ→+∞

F(ξ, ξ)

D1(ξ) + D2(ξ)
≤ lim sup

(t1,t2)→∞

F(t1, t2)

D1(t1) + D2(t2)
.

Now, arguing as before we obtain

G∗∞ = lim sup
ξ→+∞

∫ 1

0
max

(t1,t2)∈K(ξ)
G(t1, t2) dx

ξ p ≤ lim sup
ξ→+∞

G(ξ, ξ)

ξ p ≤ +∞.

Therefore, since one has also that

µG =
1[( p

2p

)
+
( q

2p

) p
q
]

G∗∞

,

λ1 = 0,
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and

λ2 = +∞.

Theorem 3.1, taking into account the positivity of f and g, ensures the conclusion.

We now exhibit an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.2. Put p1 = p2 = 2, [a, b] = [0, 1] and consider the increasing sequence of positive
real numbers given by

a1 = 2, ak+1 = ka2
k + 2,

for every k ∈N. Let F : R2 → R be a function such that

F(t1, t2) =


(ak+1)

4e
− 1

1−[(t1−ak+1)
2+(t2−ak+1)

2 ]
+1

(t1, t2) ∈
⋃
k≥1

B((ak+1, ak+1), 1),

0 otherwise,

where B((ak+1, ak+1), 1) denotes the open unit ball of center (ak+1, ak+1) and radius 1.
Now, put

h1(y) = h2(y) =
1

2 + cos y
,

for each y ∈ R. By simple calculations, we see that

H1(y) = H2(y) = y2 − cos y + 1,

for each y ∈ R, and

D1(t1) =
16t2

1 − cos(4t1) + 1
2

and D2(t2) =
16t2

2 − cos(4t2) + 1
2

.

By definition, F is nonnegative and F(0, 0) = 0. Further it is a simple matter to verify that
F ∈ C1(R2). We will denote by f1 and f2 respectively the partial derivative of F respect to
t1 and t2. Now, for every k ∈ N, the restriction F(t1, t2)|B((ak+1,ak+1),1) attains its maximum in
(ak+1, ak+1) and one has F(ak+1, ak+1) = (ak+1)

4. Clearly

lim sup
(t1,t2)→∞

∫ 3
4

1
4

F(t1, t2) dx

D1(t1) + D2(t2)
=

1
2

lim sup
(t1,t2)→∞

F(t1, t2)

D1(t1) + D2(t2)
= +∞,

since

lim
k→+∞

F(ak+1, ak+1)

D1(ak+1) + D2(ak+1)
= lim

k→+∞

a4
k+1

16a2
k+1 − cos(4ak+1) + 1

= +∞.

On the other hand, by setting ξk = ak+1 − 1 for every k ∈N, one has

max
|t1|+|t2|≤ξk

F(t1, t2) = a4
k , ∀k ∈N.

Then

lim
k→+∞

max
|t1|+|t2|≤ξk

F(t1, t2)

(ak+1 − 1)2 = 0,
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since

lim inf
ξ→+∞

∫ 1

0
max

|t1|+|t2|≤ξ
F(t1, t2) dx

ξ2 = 0.

Hence, condition (A2) is provided.
Now, let G : R2 → R be a function defined by

G(t1, t2) = 1− cos(t1t2).

By definition G ∈ C1(R2) and G(0, 0) = 0. For any sequence {ρk}k∈N such that lim
k→+∞

ρk = +∞,
since |t1|+ |t2| ≤ ρk, one has

max
|t1|+|t2|≤ρk

G(t1, t2) ≤ 2.

Then,

0 ≤ G∞ = lim sup
ξ→+∞

∫ 1

0
max

|t1|+|t2|≤ξ
G(t1, t2) dx

ξ2 ≤ 0.

All hypotheses of Theorem 3.1 are satisfied. Then for all (λ, µ) ∈]0,+∞[×[0,+∞[, the system
−u′′1 (x) =

(
λ f1(u1, u2) + µGu1(u1, u2)

) 1
2 + cos(u′1(x))

,

−u′′2 (x) =
(

λ f2(u1, u2) + µGu2(u1, u2)
) 1

2 + cos(u′2(x))
,

u1(0) = u1(1) = u2(0) = u2(1) = 0,

admits a sequence of weak solutions which is unbounded in W1,2
0 ([0, 1])×W1,2

0 ([0, 1]).

Remark 3.3. Under the conditions A = 0 and B = +∞, Theorem 3.1 concludes that for every
λ > 0 and for each

µ ∈

0,
1(

n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p

G∞

 ,

the system (Dλ,µ) admits infinitely many weak solutions in X. Moreover, if G∞ = 0, the result
holds for every λ > 0 and µ ≥ 0.

Remark 3.4. Put

λ̂1 = λ1,

and
λ̂2 =

1

lim
k→+∞

∫ b

a
sup

(t1,...,tn)∈K(bk)

F(x, t1, . . . , tn) dx−
∫ b− b−a

4

a+ b−a
4

F(x, a1,k, . . . , an,k) dx

b
p
k( n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi
)p
−

n

∑
i=1

Di(ai,k)

.
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We explicitly observe that assumption (A2) in Theorem 3.1 could be replaced by the following
more general condition

(A3) there exist n + 1 sequences {ai,k} for i = 1, . . . , n and {bk} with

n

∑
i=1

Di(ai,k) <
b

p
k(

n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p ,

for every k ∈N and limk→+∞ bk = +∞ such that

lim
k→+∞

∫ b

a
max

(t1,...,tn)∈K(bk)
F(x, t1, . . . , tn)dx−

∫ b− b−a
4

a+ b−a
4

F(x, a1,k, . . . , an,k) dx

b
p
k(

n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p −
n

∑
i=1

Di(ai,k)

<

(
n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p

lim sup
(t1,...,tn)→∞

∫ b− b−a
4

a+ b−a
4

F(x, t1, . . . , tn) dx

n

∑
i=1

Di(ti)

,

where K(bk) = {(t1, . . . , tn)|∑n
i=1 |ti| ≤ bk} (see (3.1)).

Obviously, from (A3) we obtain (A2), by choosing ai,k = 0 for all k ∈ N. Moreover, if we
assume (A3) instead of (A2) and set

rk =
b

p
k(

n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p ,

for all k ∈N, by the same arguing as inside in Theorem 3.1, we obtain

ϕ(rk) = inf
u∈Φ−1(]−∞,rk [)

(
sup

v∈Φ−1(]−∞,rk ])

Ψ(v)
)
−Ψ(u)

rk −Φ(u)

≤
sup

v∈Φ−1(]−∞,rk ])

Ψ(v)−
[∫ b

a
F(x, u1(x), . . . , un(x)) dx +

µ

λ

∫ b

a
G(x, u1(x), . . . , un(x)) dx

]
rk −

n

∑
i=1

∫ b

a
Hi(x, u′i(x)) dx

≤

∫ b

a
max

(t1,...,tn)∈K(bk)
F(x, t1, . . . , tn) dx−

∫ b− b−a
4

a+ b−a
4

F(x, a1,k, . . . , an,k) dx

b
p
k(

n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p −
n

∑
i=1

Di(ai,k)

.

We have the same conclusion as in Theorem 3.1 with Λ replaced by Λ′ :=
]
λ̂1, λ̂2

[
.
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Here, we point out two simple consequences of Theorem 3.1.

Corollary 3.5. Assume that (A1) holds and

(B1) lim inf
ξ→+∞

∫ b

a
max

(t1,...,tn)∈K(ξ)
F(x, t1, . . . , tn) dx

ξ p <

(
n

∑
i=1

(
pi
(b− a)p∗−1M

2p

) 1
pi

)p

,

(B2) lim sup
(t1,...,tn)→∞

∫ b− b−a
4

a+ b−a
4

F(x, t1, . . . , tn) dx

n

∑
i=1

Di(ti)

> 1,

where ∑n
i=1 Di(ti) is given as in assumption (A2).

Then, for every nonnegative function G : [a, b]×Rn → R which is measurable in [a, b] and of class
C1(Rn) satisfying (3.3) and for every µ ∈ [0, µG[ where

µG :=

1−
(

n

∑
i=1

(
pi(b− a)p∗−1M

2p

) 1
pi

)p

A(
n

∑
i=1

(
pi(b− a)p∗−1M

2p

) 1
pi

)p

G∞

,

the system{
−(pi − 1)|u′i(x)|pi−2u′′i (x) = (Fui(x, u1, . . . , un) + µGui(x, u1, . . . , un))hi(x, u′i), x ∈ (a, b),

ui(a) = ui(b) = 0,

for 1 ≤ i ≤ n, has an unbounded sequence of weak solutions in X.

Theorem 3.6. Assume that the assumptions (A1) and (A2) in Theorem 3.1 hold.
Then, for each λ ∈]λ1, λ2[ where λ1 and λ2 are given in (3.1), the system{

−(pi − 1)|u′i(x)|pi−2u′′i (x) = λFui(x, u1, . . . , un), x ∈ (a, b),

ui(a) = ui(b) = 0,

for 1 ≤ i ≤ n, has an unbounded sequence of weak solutions in X.

Remark 3.7. We observe that in Theorem 3.1 we can replace ξ → +∞ with ξ → 0+, and
arguing in the same way as in the proof of Theorem 3.1, but using conclusion (c) of Theorem
2.1, the system (Dλ,µ) has a sequence of weak solutions, which strongly converges to 0 in X.
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