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1 Introduction

The aim of this paper is to investigate the existence of infinitely many weak solutions for the
following doubly eigenvalue quasilinear two-point boundary value system

—(pi — D)|ul(x) [P 2ul (x) = (AFy.(x,u1, . .., thy) Gy, (x, 11, . . ., up ) hi(x,u}) in(a,b)
(DA,y)

ui(a) =u;(b) =0, 1<i<n,

where p; > 1for1 < i < n, A > 0, p > 0 are real numbers, a,b € R with a < b,
F: [a,b] x R" — R is a function such that F € C!([a,b] x R") and F(x,0,...,0) = 0 for all
x € [a,b], G: [a,b] x R" — R is a function such that G € C'([a,b] x R") and G(x,0,...,0) =0
for all x € [a,b] and h; : [a,b] Xx R —]0,+o0[ is a bounded and continuous function with
m; := inf(y ) c[ab] xR hi(x,t) > 0. Here, F,, and G,, denote respectively the partial derivatives
of F and G with respect to u; for 1 <i <n.

On the existence of multiple solutions for two-point boundary value problems of the type
(D), several results are known when n = 1, see for example [2,3,18,23] and the references
cited therein. Existence results for nonlinear elliptic systems with Dirichlet boundary condi-
tions have also received a great deal of interest in recent years; see, for instance, the papers
[11,13,19,20,22].
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For a discussion about the existence of infinitely many solutions for boundary value
problems, using Ricceri’s variational principle [26] and its variants ([5, Theorem 2.1] and
[24, Theorem 1.1]) we refer the reader to the papers [1,4,6-10,12,14-17,21,27]. We also refer
the reader, for instance, to the papers [25,28] where the existence of infinitely many solutions
for boundary value problems has been studies by using different approach.

In the present paper, employing a smooth version of [5, Theorem 2.1], under some hy-
potheses on the behavior of the nonlinear terms at infinity, under conditions on the potential
of h; for 1 <i < n, we determine the exact collections of the parameters A and y in which the
system (D, ;) admits infinitely many weak solutions (Theorem 3.1). We also list some conse-
quences of Theorem 3.1 and one example. Here, due to the facts, no symmetric assumptions
are requested on the nonlinearities, the infinitely many solutions are local minima of the en-
ergy functionals associated to the problem, and the nonlinearities depend on the term h;(x, u})
being h; a continuous bounded function and u; is the weak derivative of the component u;
of the weak solution u = (uy,uy,...,u,) of the system (D), the application of variational
methods to investigate the system (D, ;) is not standard.

A special case of our main result is the following theorem.

Theorem 1.1. Let f1, f»: R?> — R be two positive C°(IR?)-functions such that the differential 1-form
w := fi(o,v)do + fa(o,v)dv is integrable and let F be a primitive of w such that F(0,0) = 0. Fix
two integers p,q > 2, with p < q, and assume that

lim inf F(C.¢) =0 and limsup F(¢.¢)
‘:"‘I“oo gp @’—)-}-oo éq

:+00

Then, for every nonnegative arbitrary C'(R?) function G: R*> — R satisfying the condition

G, := limsup G(&8) < +oo,
—+oo CP
and for every p € [0, pg| where
1

the system

~—
=
—_~

X)[P72uf (x) = fi(uy, up) + Gy (ug,u2)  in (0,1),
5| %uy (x) = falur, uz) + pGuy (ur,u2) — in (0,1),
Ml(O) = Ml(l) = 1/12(0) = le(l) = 0,

admits a sequence of pairwise distinct positive weak solutions.

2 Preliminaries

Our main tool to investigate the existence of infinitely many weak solutions for the system
(D) is a smooth version of Theorem 2.1 of [5] that we recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let ©,Y: X — R be two Giteaux differentiable
functionals such that ® is sequentially weakly lower semicontinuous, strongly continuous, and coercive
and Y is sequentially weakly upper semicontinuous. For every r > infx @, let us put
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' SUP,ep-1(]—cor]) Y(v) —¥(u)
= f ,
?(r) ued)*%]a—oo,r[) r—(u)
and

v := liminf ¢(r), 0:= liminf ¢(r).

r—r+00 r—(infy @)+

Then, one has

(a) for every r > infx ® and every A €]0, %[, the restriction of the functional Iy = ® — AY to

®1(] — oo, 7[) admits a global minimum, which is a critical point (local minimum) of I, in X.

(b) If v < oo then, for each A €]0, % [, the following alternative holds:

either
(b1) I) possesses a global minimum,
or

(by) there is a sequence {uy,} of critical points (local minima) of 1, such that

lim ®(u,) = +oo.

n——+oo

(c) If 6 < oo then, for each A €]0, L[, the following alternative holds:

either
(c1) there is a global minimum of ® which is a local minimum of I,
or

(c2) there is a sequence of pairwise distinct critical points (local minima) of I which weakly
converges to a global minimum of P.

Let X be the Cartesian product of n Sobolev spaces W&’pl ([a, 1)), Wé’pz ([a,0]),..., Wg’p” ([a,1]),
ie, X =TT, Wé’p "([a, b]), equipped with the norm

n
[(ur, 2, oun)|| = Y Nuilly,  for every (uy,uz, ..., uy) € X,
-1

where
b 1/pi
il = ([ ol ax) ", i=1en
a

Since p; > 1fori=1,...,n, X is compactly embedded in (C([a, ]))".
In the sequel, let p = min{p;; 1 <i<n}, p=max{p; 1 <i<n},

m; = inf hi(x,t) >0 forl1<i<mn,
(x,t)€la,b] xR
M; = sup  hi(x,t) forl<i<m,

(x,t)€la,b] xR

M :=max{M;; 1 <i<n}and m:=min{m;; 1 <i <n}. Then, M > M; > m; > m > 0 for
eachi=1,...,n.
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In order to apply Theorem 2.1 we set

Hi(x,t) = /Ot (/OTWM)LZT,

for 1 <i < nand for all (x,t) € [4,b] X R, and consider the functionals ®, ¥: X — R for
each u = (uy,...,u,) € X, as follows

noob
d(u) = Z/ H;(x, ul(x)) dx,
=174
and

Y(u) = /abF(x,ul(x),...,un(x))dx—i-i(/ub G(x,ui(x),...,uy(x))dx.

It is well known that ¥ is a Gateaux differentiable functional and sequentially weakly lower
semicontinuous whose Gateaux derivative at the point u € X is the functional ¥'(u) € X*,
given by

: 'y my
Y (u)(v) :/u ;Fui(x,ul(x),...,un(x))vi(x) dx+X/,1 ;Gui(x,ul(x),...,un(x))vz-(x) dx,

for every v = (v1,...,v,) € X, and ¥': X — X* is a compact operator. Moreover, ® is a
Gateaux differentiable functional whose Gateaux derivative at the point u € X is the functional
P’ (u) € X*, given by

n b ul(x) (p. — pi—2
CIJ’(ul,...,un)(vl,...,vn):g/a </0 md7> vi(x) dx,

for every v = (vy,...,v,) € X. Furthermore, ® is sequentially weakly lower semicontinuous.

By a classical solution of the system (D, ,), we mean a function u = (u1,...,uy) such that,
fori =1,...,n, u; € C'a,b], u} € AC[a,b], and u satisfies (D, ,). We say that a function
u= (uy,...,uy) € X is a weak solution of the system (D, ,) if

n b uf(x) i — i—2 , b n
Z/ﬂ (/0 (Phim’w) vi(x)dx—/\/u ;Pu,.(x,ul(x),...,un(x))vi(x)dx

i=1

b on
—“I/l/ Y Gu,(x,u1(x), ..., un(x))vi(x) dx =0,
=1
for every v = (vy,...,v,) € X.

3 Main results

In this section, we present our main results. To be precise, we establish an existence result of
infinitely many solutions to problem (D, ;).
For all { > 0 we denote by K(¢&) the set

{(tl,...,tn)elR”: Y gg}. (3.1)
i=1
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Let
. 4 if b—a>1,
Py ifo<b-a<i
Put
/ max  F(x,ty,...,t,)dx
A = liminf (t1,- tn) €K(E)
—+oo C'E !
b-a
/ 74 F(x,ty,...,ty)dx
B := limsup o+ . ,
(tl,...,tn)—>00 ZDl(tl)

i=1

where
pi— b . . _ p,»—2
D;(t;) :—/ ( filpi b{)(x 2 )dx+ . H; <x,—tl(pl b,)a(b_ 1x) )dx,
()P o3t ()P

foreacht; € R, foralli=1,...,n,

n (b—a)’ M

Y\ P

1 i=1 =
A= and A, := . (3.2)

Theorem 3.1. Assume that

(A1) F(x,tq,...,ty) > 0 for each

xe([a,a—f—b;a]u[b—b;a,b]), LeR,Vi=1,...,n,

(A2)

b
/ ( max  F(x,ty,...,ty)dx
t

lim inf 1 n) €K (E)
¢—rtoo CB

b1
(n < ) 1M> )p . /H+T F(x,t],...,tn)dx
Y (pi—ar—— lim sup -
i=1 (t1,eeetn) —r00 Z Di(tz)

=1

Then, for each A €A1, Az| and for every nonnegative arbitrary function G: [a,b] x R" — R which
is measurable in [a,b] and of class C'(R") satisfying the condition

b
max  G(x,ty,..., t,)dx

. (tlwwtn)EK(g)
Ge := limsup ’
¢—+oo CE

< 400, (3.3)

and for every y € [0, ug [ where
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A(i( ) _1M> >pA
(é <pi(b —;2? 1M>,3,>PGOO

the system (D, ,,) has an unbounded sequence of weak solutions in X.

7

Proof. Our aim is to apply Theorem 2.1. To this end, fix A, y and G satisfying our assumptions.
Let X be the Sobolev space [TiL; W, w,” l([a, b]). For any u € X, set

n b
= H;(x,u}(x))dx, 4
Y [ Hit ) G4
and ) . )
‘P(u):/a F(x,ul(x),...,un(x))dx+X/ﬂ G(x, 11 (%), ..., tn(x)) dx. (3.5)

It is well known that they satisfy all regularity assumptions requested in Theorem 2.1 and
that the critical points in X of the functional Iy = ® — AY are precisely the weak solutions of
problem (D, ;).

Let {¢x} be a real sequence of positive numbers such that khm ¢k = +oo, and
—>400

b
/ max F(x,ty,...,t,)dx
a (t]

A= lim — fn) €K(E) 5
k—+co0 gﬁ
Put p
n b—a) 1M
(Bl
i=1 7
and p
k S 4

for all k € IN. Since 0 < h;(x,t) < M for each (x,t) € [a,b] X R fori =1,...,n, from (3.4) we
see that

u/ 1 n 1(|P
— Z I le < O(uy, e tty) < — | ZHP for all u = (uy, ..., uy) € X. (3.6)
M5 mi= Pi
Taking into account that
pi—1
(b_a) hi /
max |U; < ——|ui|p,
max ()] < E 2 il

for each u; € Wg’pi([a, b]) (see [28]), we have

15 o G L L (37)
x€lab] pi B 2k i=1 Pi /

for each u = (u1,uy,...,u,) € X. This, for each r > 0, along with (3.6), ensures that

O 1] —oo,r]) C {u € X; maxz [ui(2) P < (b— )" ~TMr

< for each x € [a, ] }
p
=1 pl 27
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Therefore, one has
sup ¥ (v)
ve®1(]—00,r¢])
@(rr) < p
k
b 1 b
/ max F(x,tl,...,tn)dx+X max G(x,t1,...,ty)dx
<5 a (b, tn) €EK(E) a (t,tn) €EK(G1) (3.8)
P
Ck
b b
/ max  F(x,ty,...,t,)dx / max G(x,ty,...,tn)dx
a_ (t1tn) EK(Gp) M Ja (t,tn) €K ()
<S 5 + SX 7 ,
Cr Ck
for all k € IN. Therefore, from assumption (A2) and the condition (3.3) one has
v <liminf @(ry) < SA+ SyG < +o0. (3.9)
k— 400 A
Now, let {(77;x)} € R" be positive real sequences such that 7, > 0 foralli =1,...,n and for
all k € N, and
XGRS
Put
bt
/ o F(x, 1k Yni)dx
B:= lim i (3.10)
k—+o00
E Dz(ﬂz k)
i=1
Let {wy = (w1 x(x),..., w,x(x))} be a sequence in X defined by
4 pi—1 _
<b—a) nix(x —a)yPi—t if a§x<a+Ta,
wik(x) = 4 7ig if a+ 174;‘1 <x<b- b—a (3.11)
4 \ri—1 b—
\(b_a) g — )P0 if b Ta <x<b,
foreachi=1,...,n. Clearly wi(x) € [T W, 1p’([a,b]) for each k € IN.
Hence, we have
)=y [ H
a i=174
n a(pi— 1) (x —a)Pi™ b—”—”
— Z [ ﬂz,k(pz(ba))(:jla dx+/ dx
= b : ) (3.12)
— — x)Pi—
+ Hl<x,_;71k(pl 1)(b X) )dx
p—_b-a (%ﬂ)pl 1
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On the other hand, since G is nonnegative and bearing assumption (A1) in mind, from (3.5)
one has

b b
Y (wy) = / F(x,nllk,...,;yn,k)dx+%/ G(X, 1jse s g) dx

b
2 / F(X, 1k - - ) A% (3.13)
-ty
2 / b—a F(x/ 171,](/ sy ;711,]() dx,
a+bye
and so
n b_u
I (wi) = P(wye) — AY (we) < Y Di(7ix) )\/ F(X, 1 -+ ) nk) dX.
i=1

Now, consider the following cases.
If B< +oo,lete € ]O B — 7[ From (3.10), there exists ve such that

p—b=a

n
/+b_: F(xX, ik i) dx > (B—€) Y _ Dj(n;), forall k> v,
a7 i=1
and so
n n n
I/\<wk) < Z (7717( —€ Dl 771k ZDl 771k (B_e)]'
i=1 i=1 i=1

Since 1 — A(B — €) < 0, and taking into account (3.6) and (3.12) one has

lim L\(wk) = —00Q.
k—+o0

If B= 4o, fix M > % From (3.10), there exists vy such that
b—bpa n
/ F(x, 1k nk)dx > M ZDz‘(%‘,k)/ forall k> vy,

a+lyt i-1
and moreover,
n
I(wi) < Y Dji(mi)[1 — AM].
i=1

Since 1 — AM < 0, and arguing as before, we have

lim I —o00.
i, 1) = —oo

1/ é C 0/ i 7
B "A|— 0%
and that I} does not possess a global minimum, from part (b) of Theorem 2.1, there exists an

unbounded sequence {u;} of critical points which are the weak solutions of (D, ,). So, our
conclusion is achieved. O

Taking into account that
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Proof of Theorem 1.1. Since f; and f, are positive, then F is nonnegative in IR%. Moreover, one
has that the functions t; — F(t1,t2), f» € R, and t, — F(t3,£2), t1 € R are increasing in R and,
hence, max, 1,)ck(#) F(t,tp) < F(E,¢) for every ¢ € RT. Therefore,

ty,t2

1 1
/ max  F(ty,tp)dx / F(,&)dx
fim inf 20 (w2 <K <lminf T ming FE8)
§—too cr §too gr gotoo P
On the other hand, one has
hi(u)) =1 and hy(u}) =1.
By simple calculations, we see that
p q
Hl(t1> = ‘t;’ and H2(t2) = |t2|
Moreover,
4r=1 gy |P _ _
Din) = “ W p -1 2 (1,
and
49-1t, |9 _ _
Da(tz) = 2 (= 112+ (1 - g2

Since p < ¢, one has

i)+ Daft) < T (g2 o gy 2B g ayens gy
< 4971(q - 1)"‘; +(1+9)17] (tl? + [f2])
A O
Then
= T T g2 P
< msup 51 gy < M 5 B

Now, arguing as before we obtain

1
/( max  G(t,tp)dx
0

G, = limsup hui2)eK(0) < limsup Si(79) < Ho00.
Therefore, since one has also that
1
HGc = 7 ’
q
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and
/\2 = —+-o00.

Theorem 3.1, taking into account the positivity of f and g, ensures the conclusion. ]
We now exhibit an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.2. Put p; = p» = 2, [a,b] = [0,1] and consider the increasing sequence of positive
real numbers given by
a =2, A = ka% +2,

for every k € N. Let F: R*> — R be a function such that

1

- +1
(ags1)te Um0 ) (t1,t2) € U B((ax41,ax41),1),
F(ty,t2) = k>1
0 otherwise,

where B((ax+1,ax+1),1) denotes the open unit ball of center (ax,1,a,.1) and radius 1.

Now, put
1

h(y) = ha(y) = 3T cosy’

for each y € R. By simple calculations, we see that
Hi(y) = Ha(y) = y* —cosy +1,
for each y € R, and

1612 — cos(4t;) + 1
Dl(t1) = 1 2( 1) and Dz(tz) =

16t5 — cos(4t) + 1
> :

By definition, F is nonnegative and F(0,0) = 0. Further it is a simple matter to verify that
F € C(R?). We will denote by f; and f, respectively the partial derivative of F respect to
t; and t,. Now, for every k € IN, the restriction F(#, t2)|B(( attains its maximum in

A41k41),1)
(ary1,ax+1) and one has F(ag,1,ar11) = (ax41)* Clearly

lim sup D% e = ~ limsup F(f f2) = +oo,
(tt) oo D1(01) + Da(t2) 24 4 oo Di(t1) + Da(t2)
since
lim F(agi1,a41) ~ lim A oo,

k—+o0 D1 (ak+1) + Dz(ak+1) N k— 00 16a%+1 — COS(4ﬂk+1) +1 -

On the other hand, by setting ¢y = a1 — 1 for every k € IN, one has

max F(ty, ) = ai, Yk € IN.
|t1]+[t2| <k

Then
max  F(ty, 1)
li [t1]+[t2| <Gk
im

=0,
k—+c0 (ak+1 — 1)2
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since

1
/ max F(ty,tp)dx
0

liminf fl+lta<C
{—+o0 (:2

Hence, condition (A2) is provided.
Now, let G: R2 — R be a function defined by

=0.

G(tl, tz) =1- COS(tltz).

By definition G € C!(R?) and G(0,0) = 0. For any sequence {py }, such that lim p; = +oo,
X k—+o00
since |t1| + |t2] < pk, one has

max G(f,t) < 2.
[t1]+t2]<px

Then,
1

max G(ty,t)dx
<
0 < Go = limsup 0 lal+al< <0.

g—r o0 (:2 N

All hypotheses of Theorem 3.1 are satisfied. Then for all (A, i) €]0, +00[x [0, 400, the system

—ull(x) = (Afl(m,uz) + UGy, (u1, u2)> 2—|—cosl(u’1(x))'
_ulz’(x) = (Afz(ul,uz) + yGuz(ul, u2)> 2+cosl(u’2(x))'

u (0) = ul(l) = MQ(O) = Mz(l) = 0,
admits a sequence of weak solutions which is unbounded in Wy?([0,1]) x W,([0,1]).

Remark 3.3. Under the conditions A = 0 and B = +0co, Theorem 3.1 concludes that for every
A > 0 and for each

1

"e 0, n (b )P* M LN P
—a - Pi \
(Z <Pi2p> ) Geo

i=1

the system (D, ;) admits infinitely many weak solutions in X. Moreover, if Go = 0, the result
holds for every A > 0 and y > 0.

Remark 3.4. Put

and
— 1

Ay = .
b
/ sup F(x,tl,...,tn)dx—/ F(x,a1p,...,a,k)dx
, @ (...t )EK(by) a+t?
lim
k—+o0 b- n
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We explicitly observe that assumption (A2) in Theorem 3.1 could be replaced by the following
more general condition

(A3) there exist n 4 1 sequences {a;} fori =1,...,n and {b;} with

by

R Y

for every k € IN and limy_, ;o by = +00 such that

4

b—a
b=

b
/a " Itn.)aexK(b )F(x, t, ..., ty)dx — /Hb_a F(x,a1p,...,a,x)dx
lim 2t (et SO =

p
k— Ll
+00 bk

n (b_a);?**lﬂ p% EE
T d
1 et
< ( ) <pi(b—a)l’ —IM)é)” /a+b4a (o ) ax
i=1 ( .

o lim sup

where K(by) = {(t1,...,ta)| Xitq |ti] < bk} (see (3.1)).
Obviously, from (A3) we obtain (A2), by choosing a;, = 0 for all k € IN. Moreover, if we
assume (A3) instead of (A2) and set

P
bk
T

(; <pi (b— az);’*‘lM> m)'

for all k € IN, by the same arguing as inside in Theorem 3.1, we obtain

T =

( sup ‘I’(U)) —Y¥(u)
. ve®(J—oory])

k) = inf
#(r) ued=1(]—oco,r[) ry — d(u)

sup Y(v) — [/b F(x,ui(x),..., up(x))dx+ e G(x,u1(x),..., uy(x))dx
) a

vED1(]—00,r(]

b =
max F(x,tq,...,t dx—/ F(x,a1s,...,0,¢)dx
/a (t1,0stn ) EK (bg) (.t ) at+bye ( Lk n’k)

< 7
k

FE=

We have the same conclusion as in Theorem 3.1 with A replaced by A’ := }//\I, A2 [
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Here, we point out two simple consequences of Theorem 3.1.
Corollary 3.5. Assume that (A1) holds and

b

. . a (tlr---/tn)EK(g)
B1) 1 f
B Iy zr

max  F(x,ty,...,t)dx (

Zn: (PiW) é)l’,

2

bt
/ , F(x,ty,...,ty)dx

a+ly

(B2) limsup

(tl,...,t,,)%oo

>1,
D;i(t;)

n
i—1

where Y 1 D;(t;) is given as in assumption (A2).
Then, for every nonnegative function G: [a,b] x R" — R which is measurable in [a, b] and of class
CY(IR") satisfying (3.3) and for every u € [0, ug| where

1— (é <Pi(b —;3?*1]\4) F}J.)?’A

yG:: p 4

(2 (pi(b _;gpmM) é)Gm

—(pi — V)|ul(x)|Pi2uf (x) = (Fy,(x,u1, ..., ) + uGuy (x,u1, . .., un) i(x,ul), x € (a,b),
uj(a) =u;(b) =0,

the system

for 1 <i < mn, has an unbounded sequence of weak solutions in X.

Theorem 3.6. Assume that the assumptions (A1) and (A2) in Theorem 3.1 hold.
Then, for each A €A1, Ay| where Ay and A, are given in (3.1), the system

—(pi — D)|ui(x)[Pi2u!! (x) = AF,,(x,u1, ..., uy), x € (a,b),
ui(a) = ui(b) =0,

for 1 <i < n, has an unbounded sequence of weak solutions in X.

Remark 3.7. We observe that in Theorem 3.1 we can replace { — +oco with  — 01, and
arguing in the same way as in the proof of Theorem 3.1, but using conclusion (c) of Theorem
2.1, the system (D, ;) has a sequence of weak solutions, which strongly converges to 0 in X.
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